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Introduction

To clear up confusion and mollify any misunderstandings, | have typed up the modeling of sodium
conductance using Hodgkin-Huxley (HH) formulations, as | understand them. I've included some inserts
from the original HH papers (specifically, the 1952d paper, A QUANTITATIVE DESCRIPTION OF
MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE), as well as
some other works that I've referenced over the years.

Sodium conductance modeled as a set of first order equations

To model a traditional, TTX-sensitive transient sodium current, as was recorded in the giant squid axon
by Hodgkin and Huxley, we begin with:

INa = g_Nam3h
where gy, is the sodium conductance, gy, is the fixed sodium conductance density of open Na
channels, m is the activation rate and h is the inactivation rate.
Hodgkin and Huxley described the activation and inactivation with the following gating equations:

m' = ap(l—m)—fpm

h' = ap,(1—h) — prh
where a and f§ are rate constants. See page 512, Hodgkin and Huxley 1952d.

To characterize voltage-gated channels, equations are fit to voltage clamp data. Under voltage clamp
conditions, where the voltage can be held constant, the nonlinear gating equations can be reduced to:

M = Me =~ (Mey = Mo) €xp (=) A = heo = (heo = ho) exp (— 1)

Where m,is the steady-state activation function, t,, is the time constant of activation, h, is the steady-
state inactivation function, and 7, is the time constant of inactivation. Steady state voltage-dependent
time constants of activation and inactivation functions are as follows:

11
am+Bm’ apt+Ph

Tm = Th =

Ok, so given these steady-state equations, and the following two assumptions: At rest, the sodium
conductance is small relative to the conductance during a large depolarization, (1) which therefore allows
us (them) to neglect m, if the depolarization is greater than 30 mV. Also, inactivation is “very nearly
complete” is the V < -30 mV so that (2) h,, may also be neglected.



We can further reduce the equation for sodium conductance to:

_ t\,s t
INa = Gnall — exp (— —)] exp (——)
T Th

m

Then gnq, Tm and T, values were calculated by fitting that equation to the following experimental data:

109 e 2 A
100 ° 2 2 o— 5
C
:\ 88 O 0 S Y o=
£
<
) 100
= D ]
E
g E
v
2 F
E m
% 38 — =2 0. S 5
H
@ 32?% o o —o-
I o]
—0 O 1
2% o ] 0

— — =>=19=

w

fo-o# —_— o K o
10 L
6“0‘».4-0-“ O O -0— 0-101

1 1 1 1 1 1 1 1 1 1 1

9 10 11 msec

or
w
-
w
o
~N
@®

Using these, they were able to calculate @ and f using: @, = My, /Ty, and B, = (1 — My, ) /Ty as shown
below:

TABLE 2. Analysis of curves in Fig. 6

INa My T Xy 7 heo o B

Curve (mV) (m.mho/cm?) (msec) (msec™) (mggc-‘) (ms:c) (msec—?) (msec?)
— (-) (42-9) (1-00) — — — — — = -
4 -109 403 0-980 0-140 70 (0-14) 0-67 (0) 0) 1-50
B -100 426 0-997 0-160 6-2 (0-02) 067 (0) (0) 1-50
C - 88 46-8 1-029 0-200 516 (-014) 0-67 0) (0) 1-50
D - 176 39-5 0976 0-189 515 013 0-84 0) 0) 1-19
E - 63 38:2 0-963 0-252 3.82 015 0-84 () () 1-19
F - 51 307 0-895 0-318 2-82 0-33 1-06 0) (0) 0-94
q - 38 20-0 0-778 0-382 2:03 0-58 1-27 0) (0) 0-79
H - 32 16-3 0-709 0-5620 1-36 0-56 1-33 0 0) 0-75
1 - 26 790 0-569 0-600 0-95 072 (1-50) (0-029) (0-02) (0-65)
J - 19 144 0-323 0-400 0-81 1-69 (2-30) (0-069) (0-03) (0-40)
K - 10 013 0-145 0-220 0-66 39 (5-52) (0-263) (0-05) (0-13)
L - 6 0-046 0-103 0-200 0-51 45 (6-73) (0-388) (0-06) (0-09)
= () (0-0033)  (0-042) — — — — (0-608) — —

Values enclosed in brackets were not plotted in Figs. 7-10 either because they were too small to be reliable or because they were not independent
measurements obtained in this experiment.

ay and Bpwere derived in a similar manner, by plotting against data and solved using: a, = h /7, and
Brn =1 —he)/h.



Modeling sodium currents in vestibular ganglion neurons
We used a different but functionally equivalent formulation:

Ing = g_Na(m3h)(V - ENa)

where

and

vy v+ v\
Mo = [1 + exp (_—k >] i he = [1 + exp <_—k >]

M is still the steady-state activation function, 7,,the time constant of activation, h,, the steady-state
inactivation function, and t; the time constant of inactivation. Steady Conductance density (g), reversal

potential (Ey,), half activation (V1/2), and slope factor (k) were based on experimentally derived values
from this our study.
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Our steady state equations are therefore:

e = [1 +oxp (_ v+ 40)]‘1 v+ 65>]‘1

3 ; hoo=[1+exp<— 9

Our time constants of activation and inactivation were derived by fitting the rising and decay phase of
sodium currents to determine the voltage-dependence of time constants. The time constant of activation
(Tm) was assessed by fitting the rising phase of a sodium current with the equation:

X
y=yo—A(l—e7)3

The power (3) was used since it best fit the very fast rise of the sodium current. The time constant of
inactivation (t,) was assessed by fitting the decaying phase of a sodium current with:

X
y=YotA(e )
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Using a similar methodology, Rothman and Manis (2003c) use the following equations for t,,, and 7y,
which were subsequently used in Hight and Kalluri 2016, and Ventura and Kalluri, 2019:

V4607t
I} +o0s

V + 60
= 10{5exp[ 18 ]+36exp[—T

— 100{7 exp [ =] + 10 exp - V+6ﬂ{‘+06
Th = exp 11 exp oc .

where presumably

=5 exp [V+60]

36 exp [_ V+60]

V+60

] Bm = 10exp [—

These were putatively derived from data in Costa (1996):

=7 exp [ V+ 60]
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Fig. 4. Time-constant of activation (7, ). A: illustration of the measure-
ments (i, and i,) to calculate the time-constant of activation (1, Eq. 3).
N Two exponentials were fit to the falling phase of the signal and extrapo-
lated to the time of the start of the pulse; i, and i, as in Eq. (3). B:
=== — voltage-dependence of activation 7, (mcan values) in older (P > 25,
filled circles) and immature cells (P;_5, open circles); error bars are
=50 —-40 =30 =20 -10 0 10 +38.E.M. Corresponding representative activation (m,) curves obtained
with the mean values in Table 1 (V,,, and V,) were superimposed (solid

m (mV) line: P > 25; doted line: Py_).

Left: voltage-dependence of the time-constants of inactivation measured in activation protocols

7 inactivation, h*
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