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Abstract (67 of 75 words) 
Primary vestibular neurons are categorized as either regularly or irregularly firing afferents that use rate 
and temporal sensory encoding strategies, respectively. While many factors influence firing in these 
neurons, recent work in mammalian vestibular afferents has demonstrated a rich diversity in ion channels 
that drive spiking regularity. Here, I review key ionic currents studied in vitro and demonstrate how they 
may enable sensory encoding strategies demonstrated in vivo.  
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Introduction 

The peripheral vestibular organs sense head motion and tilt with respect to gravity, detecting 
information necessary for maintaining posture and orientation as well as providing input to construct a 
stable visual world. Vestibular hair cells, located in the inner ear, encode and convey sensory information 
to the brainstem and higher cortical areas through bipolar afferents known as vestibular ganglion neurons 
(VGN) (Figure 1A). The distribution of VGN firing regularity is bimodal, such that afferents are classified as 
either highly regular or highly irregular with respect to their spiking activity (Goldberg 2000) (Figure 1C). 

Regular VGN fire at high rates, up to 400 Hz during stimulation in vivo. Irregular VGN fire at similar 
or lower rates. Such differences in firing rate can distort regularity metrics such as coefficient of variation 
(CV). Goldberg and colleagues therefore normalized CV by firing rate and denoted the new metric as CV* 
(Goldberg 2000). Regular VGN fire with high regularity with a mode CV = 0.25 or CV* = 0.05 in vivo. In 
contrast, irregular VGN fire much more erratically (CV ≥ 0.7, CV* ≥ 0.3) (Eatock et al., 2008). These 
differences are hypothesized to underlie two different sensory encoding strategies used by the system 
(Jamali et al., 2008).  

First, I will discuss how ion channel composition has proved critical in driving the differences in 
spiking activity in vitro. I will then summarize in vivo work demonstrating regular and irregular firing 
correspond rate and temporal (i.e., precise spike timing) encoding strategies. Finally, I will address how 
the ionic mechanisms underlie differences in firing patterns in VGN in vitro can enable two parallel sensory 
encoding strategies to convey different aspects of head acceleration in vivo. 
 
Ionic currents in vestibular ganglion neurons modulate firing patterns 

Vestibular afferents have a bipolar morphology, with the distal branch synapsing on hair cells in 
the vestibular sensory epithelia and the axon projecting to the brain. VGN express a vast repertoire of ion 
channels that correlate with epithelial zone innervated (Eatock et al., 2008). Distinct zones (peripheral vs. 
central) strongly correspond to differences in spiking regularity. Regular afferents form large dendritic 
arbors in peripheral zones; these large arbors allow for the integration and summation of many hair cell 
inputs before reaching the spike initiation zone on the distal branch. In contrast, irregular afferents have 
a compact dendritic arbor in the central zone and contact relatively few hair cells (Figure 1A, top panel). 
Despite these differences, morphology alone does not drive spike timing differences as isolated VGN cell 
bodies still exhibit differences in spiking behavior (Goldberg 2000). 
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Figure 1 Vestibular afferent neurons differ in their spiking activity. (A) Top panel: Vestibular hair cells synapse onto primary vestibular afferents. 

The number of synaptic connections differs between zones (central vs. peripheral) of the sensory epithelia. Bottom panel: Vestibular ganglion 

neurons can be dissected and isolated to assess currents and spiking behaviors via electrophysiology. (B) Isolated VGN frequently do not fire 

spontaneously and must therefore be stimulated with injected current. VGN can fire with either a sustained (middle panel) or transient pattern 

(bottom panel) in response to a current step. (C) When stimulated with simulated synaptic input (pseudo-EPSCs), the same sustained VGN fires 

at regular intervals, whereas the transient VGN fire at irregular intervals, corresponding to vestibular afferent behavior seen in vivo. 

 
In isolated rodent VGN somata (Figure 1A, bottom panel), regular and irregular VGN respond 

with sustained and transient firing patterns, respectively, to depolarizing current injections (Kalluri et al., 
2010) (Figure 1B). Using this preparation, VGN were found to have voltage-gated sodium channels, 
calcium channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, calcium-gated 
and voltage-gated potassium channels, to name a few (Eatock et al., 2008). Sustained VGN have low 
current thresholds, a deep afterhyperpolarization (AHP), and fewer low voltage-activated potassium 
channels. Transient VGN, in contrast, have higher thresholds, a shallower AHP, and more low voltage-
activated potassium channels (Eatock et al., 2008). In this review, I will focus on two types of currents, 
low-voltage activated potassium (I-KLV) and voltage-gated sodium (I-Na), that are hypothesized to be 
instrumental in spike timing regularity differences. 

I-KLV has been shown to be key in producing irregular spike timing. Kalluri et al. (2010) showed, 
in isolated rat VGN, that the large I-KLV in transient neurons hyperpolarizes their resting membrane 
potential (Vrest) and decreases input resistance. This in turn increases the injected current needed to 
depolarize (i.e., higher current threshold). Following AP repolarization, the AHP appears truncated due to 
the relatively negative Vrest. A relatively hyperpolarized Vrest allows a large spike at stimulus onset but 
decreases the likelihood for a continued response as I-KLV hinders subsequent spiking. Kalluri and 
colleagues also blocked I-KLV with α-dendrotoxin and linopirdine, indicating significant Kv1 and Kv7 
contributions, and demonstrated both an increase in regularity and a decrease in spiking threshold in 
transient VGN. More recently, I-KLV has been shown to increase with development in both transient and 
sustained VGN, likely driving changes in firing patterns as VGN become more phasic after the first month 
of development (Ventura and Kalluri, 2019). Thus, regularity likely decreases globally as VGN mature. 

Using available electrophysiological data, Hight and Kalluri (2016) developed a conductance-
based VGN model to assesses the relationship between biophysical characterizations of ionic currents and 
spike timing. This model was later expanded by Ventura and Kalluri (2019) to include other current 
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components such as Kv7 and hyperpolarization-activated cyclic nucleotide-gated (HCN) currents. In 
summary, for a transient VGN to be produced, the model must have a high level of low-voltage activated 
potassium conductance (gKLV, based on Kv1 and Kv7) and moderate levels of Na conductance (gNa, TTX-
sensitive Na currents) as its parameters. In contrast, a fully sustained model VGN must have low gKLV and 
high gNa. This model not only reinforced the pivotal role of I-KLV in driving transient/irregular spiking, it 
also suggested that differences in I-Na may be necessary for spiking regularity.  

The role of I-Na in spike timing regularity has been long overlooked due to previous reports of 
homogeneity in voltage dependence and tetrodotoxin (TTX) sensitivity in cultured VGN somata (e.g., 
Risner and Holt, 2006). However, a large I-Na may be necessary for producing the high firing rates 
observed in regular VGN. Additionally, I-Na may be essential for maintaining sustained firing patterns in 
the wake of developmentally upregulated I-KL. While work in determining the exact role of I-Na is ongoing, 
RT-PCR screens of rodent vestibular ganglion revealed expression of most Na channel subunits, including 
the TTX-insensitive NaV1.5 and the TTX-resistant NaV1.8. These currents were subsequently described in 
acutely dissociated (i.e., not cultured) rat VGN (Liu et al., 2016) and gerbil vestibular afferent endings 
(Meredith and Rennie, 2018). Very recent work (Rennie and Meredith, 2020) showed more I-Na current 
diversity in the form of persistent and resurgent Na currents, which were observed with greater frequency 
in mature peripheral afferent endings of regular/sustained VGN. While their impact on VGN firing is yet 
unknown, persistent and resurgent Na currents are known to enhance high frequency, highly regular firing 
in other types of sensory neurons (see Lewis and Raman, 2014 for a review).  

In summary, evidence from in vitro studies of VGN has shown that I-KL is important for driving 
transient/irregular firing. Transient/irregular VGN have express large I-KL currents, and sustained/regular 
VGN express smaller ones. The role of these currents was reinforced via a conductance-based model, 
which also indicated a potential role for I-Na currents in producing sustained/regular spiking. Recent work 
has shown unprecedented diversity in I-Na currents, the impact of which are currently being determined.  
 
Spike timing regularity is strongly correlated with sensory encoding strategy 

It has long been known that regular and irregular VGN differ in their in vivo response dynamics 
(i.e., responses in time and frequency domains). Investigators have long recorded vestibular afferents in 
intact animals during physiological stimulation (see Goldberg 2000 for a review). To briefly summarize 
fifty years of work, irregular afferents are fast adapting and the gain (i.e., sensitivity) of their response 
increases with frequency, shown by larger responses to high-frequency head motions. Regular afferents 
are slower adapting and have lower sensitivity to fast head motions. Goldberg postulated that regular 
afferents could convey more information via their high discharge rate and low variation in firing rate. In 
contrast, irregular afferents have enhanced sensitivity and high intrinsic variability, both of which impact 
spike rate fluctuations independently of noisy input and improving information transmission (Goldberg 
2000). The recent application of information theory and statistics to vestibular afferent spike trains, 
discussed below, has supported this idea.  

Sadeghi and colleagues assessed, using information theoretic measures, how differences in 
spiking regularity influenced information transmission by vestibular afferents (Sadeghi et al., 2007). They 
applied rotational head velocities (measured in head motion frequencies) and reconstructed the stimulus 
from recorded vestibular afferent responses in macaques. While major conceptual findings were later 
revised, they showed that regular afferents were highly linear and demonstrated low variability in their 
responses relative to irregular afferents. Information theory metrics showed that regular afferents 
encoded a more significant fraction of the stimulus via linear changes in firing rate and conveyed two 
times more information per spike. Additionally, while irregular afferents had higher sensitivity for higher 
frequencies (15–20 Hz), regular afferents displayed greater relative sensitivity for lower frequencies (0.5–
5 Hz). They posited that intrinsic variability (or lack thereof) in VGN spiking activity strongly influenced the 
encoding strategies used by vestibular afferents.  
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More recent work, published by Jamali and colleagues in 2016, ultimately showed how regular 
afferents use rate encoding and irregular afferents use precise spike timing (Jamali et al., 2016). Again, 
when examining changes in firing rate (i.e., the use of rate encoding), regular afferents had higher mutual 
information metrics relative to irregular afferents. However, when examined within the context of 
temporal encoding (i.e., precise spike timing), irregular afferents outperformed regular afferents. Irregular 
afferents displayed greater variance in their firing rate and were highly nonlinear in their responses. They 
showed distinctive spiking patterns to repeated trials of the same stimulus, with distinct and reproducible 
patterns of spikes produced within a 6-millisecond time frame. Regular afferents did not display such 
precise spike timing even at 30 milliseconds. Then, using an integrate-and-fire computational model of 
vestibular afferents to examine encoding, they varied sensitivity (likelihood of spiking) and variability 
(stochasticity) parameters in a model neuron. Model neurons with high levels of sensitivity and low 
variability increased information transmission via firing rate, like regular afferents. Neurons with high 
variability showed more precise spike timing performance, like irregular afferents. These in vivo and 
computational data strongly suggest that systematic differences in intrinsic variability can serve distinct 
forms of sensory information. 
 
Intrinsic variability in VGN is putatively dependent upon ionic currents 

To bridge the gap between in vivo and in vitro experiments, I posit that the intrinsic variability that 
influences sensory encoding stems from the balance of I-KLV and I-Na that modulates spike timing 
irregularity. For example, Kalluri et al. (2010) imply that transient VGN have high intrinsic variability. The 
transient neuron could fire a spike in response to a single, large pseudo-EPSC when spaced regularly at 
long equal intervals (<300 ms). However, as the intervals were systematically shortened (down to 10 ms; 
note that these were room temperature observations), transient VGN became less likely to fire an AP for 
each EPSC, assumably due to the inhibitory influence of I-KLV and the accumulation of Na channel 
inactivation. Therefore, even if the pseudo-EPSC input itself is regular, transient VGN still fire irregularly. 
This demonstrates that the variability present in isolated transient VGN does not stem from variability in 
injected stimuli. This constitutive irregularity may be key for producing the high intrinsic variability needed 
precise spike timing seen in irregular VGN in vivo.  

To frame it in terms used by Jamali et al. 2016, while transient VGN have high intrinsic variability, 
sustained VGN have high sensitivity (likeliness to fire). In the same experiment discussed above in Kalluri 
et al. 2010, they showed sustained VGN increased in spike rate as pseudo-EPSP intervals decreased (i.e., 
a greater ratio of APs per number of pseudo-EPSPs) and could keep up with short intervals of 10 
milliseconds. In other experiments, blocking I-KLV made transient VGN fire with greater regularity and 
reduced spiking threshold; not only did reducing I-KLV reduce the size of EPSCs needed to elicit firing, this 
block also increased the number of APs per pseudo-EPSP at smaller intervals. Thus, high I-KLV in mature 
transient VGN seems to correspond with increased variability, while low or moderate I-KLV in mature 
sustained VGN corresponds with increased sensitivity.  

The precise impact of I-Na on spike timing regularity is still unknown. However, given the results 
available from recent studies examining these currents in vitro (Liu et al., 2016; Meredith and Rennie 2018, 
2020) and the known kinetics of different Na currents (Raman and Lewis, 2014; Liu et al., 2016), I 
hypothesize that having larger I-Na would increase Na channel availability to facilitate high-frequency 
firing seen in regular afferents. Additionally, having I-Na currents active below or at spike threshold (e.g., 
persistent Na current) would increase sensitivity and probability of firing. For example, the expression of 
non-inactivating persistent and resurgent currents close to the spike initiation zone may enhance spiking 
excitability (Meredith and Rennie, 2020).  
 
Implications and future directions 
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Vestibular afferents, and their presynaptic hair cells, are an arguably underrated yet beautiful 
example of sensory transmission where the encoding of a vast range of sensory information can be 
attributed to variation in their physiological characteristics. Information is represented in two distinct yet 
parallel channels that use different sensory encoding strategies to convey complementing signals. Rate 
encoding, used by regular vestibular afferents, transmits low-frequency head motions (<0.01 – 5 Hz), 
corresponding to activities such as walking and is useful in stabilizing the vestibulo-ocular reflex (Carriot 
et al., 2014). As seen in irregular afferents, precise spike time encoding represents head motions in the 5 
– 20 Hz range, such as occur during jumping or falling (Carriot et al., 2014). Even more striking, those 
sensory encoding strategies seem to depend on constitutive bioelectric properties that are at the heart of 
differences in spike timing regularity. In addition, questions about where these afferents synapse in the 
vestibular brainstem, the role of efferent feedback in modulating spike timing, and how this information 
contributes to computations in the brain stem and cortex will also inform our understanding of vestibular 
sensory processing. These electrophysiological data and computational analyses all serve to inform 
biomedical advancements like the vestibular prosthesis and treatments of vestibular disorders. 
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